If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+64t+10
We move all terms to the left:
t-(-16t^2+64t+10)=0
We get rid of parentheses
16t^2-64t+t-10=0
We add all the numbers together, and all the variables
16t^2-63t-10=0
a = 16; b = -63; c = -10;
Δ = b2-4ac
Δ = -632-4·16·(-10)
Δ = 4609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{4609}}{2*16}=\frac{63-\sqrt{4609}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{4609}}{2*16}=\frac{63+\sqrt{4609}}{32} $
| 9g=22 | | 8(4-3x)=3(8+5x) | | 5z+1=4z+1 | | 5x+9=108 | | (2w)-w-12=180 | | 128+52+5x+3=180 | | 2w-67=w | | 11a=67 | | C=200x+1000 | | -0.53x+0.23x=7.8 | | 4(3w+7)=8(w+6) | | 5d=2d-18-2d-2d3d=-18d=6 | | X+2x+3=162 | | 2p-49=p+49 | | j−33=3 | | 3(2-6m)-15m+3=108 | | 128+52+7x+3=180 | | 3-2k=1 | | 8/x=10/9x+1 | | 2b-20=b+40 | | 8=u/7 | | 8x1=2x+9 | | 8x+4=4(x-4) | | x/2-13=12 | | 16=4(w+2$ | | 5d=2d-18-2d-2d3d=-18 | | 46=2j | | 9-(2x)=43 | | 8x1=2x+9 | | 142+38+20x-2=180 | | (s-49)+(s-38)=s | | 5r+8r+4=30 |